advanced students. Nevertheless, it should serve equally well as a lucid introduction to this subject in other school systems, such as that in this country.

Volume 1 provides in the space of nine chapters a very readable introduction to such topics as the use of hand-calculating machines; rounding errors; flow charts; curve tracing and the graphical solution of equations; iterative methods for the solution of equations in one or more variables; differences of a polynomial and their application in locating and correcting tabular errors; solution of linear simultaneous equations by the methods of elimination, triangular decomposition, and Gauss-Seidel iteration; numerical solution of polynomial equations; linear interpolation; and numerical integration by the trapezoidal, mid-ordinate, and Simpson rules.

Volume 2 treats equally clearly and concisely in eight chapters such topics as the interpolation formulas of Gregory-Newton, Bessel, and Everett (including throwback); inverse interpolation; Lagrange interpolation (including Aitken's method); numerical integration using differences; numerical differentiation; numerical solution of ordinary differential equations of the first and second orders; curve fitting by least squares; and the summation of slowly convergent series by Euler's method and the Euler-Maclaurin formula.

Each volume is well supplied with illustrative examples as well as with exercises (and answers) for the student. Also included are short bibliographies of material for further reading and study.
J. W. W.

66[2.10].-F. G. Lether \& G. L. Wise, Ralston Quadrature Constants, Tables appearing in the microfiche section of this issue.

An n-point quadrature rule of the form

$$
\int_{-1}^{1} f(x) d x \simeq \sum_{i=2}^{n-1} a_{i} f\left(x_{i}\right)+a_{1}(f(-1)-f(1))
$$

which is of polynomial degree $2 n-4$ is termed a Ralston Quadrature Rule. A list of weights and abscissas for $n=3(1) 9$ is given, together with coefficients e_{1} and e_{2} which may be used to bound the approximation error in terms of bounds on the first or second derivatives of $f(x)$.

Rules of this type may be used in cytolic integration. Because $a_{1}=-a_{n}$ and $x_{1}=-x_{n}=-1$, if the integration interval is divided into N equal panels and the n point rule used in each, only $N(n-2)+2$ distinct function values are required for a result of polynomial degree $2 n-4$. This may be compared with $N(n-2)$ distinct function values using a Gauss Legendre formula to obtain a result of polynomial degree $2 n-5$.

The weights and abscissas are given to between nine and eleven significant figures. The authors also list the coefficients in the polynomials whose roots are the abscissas. This information may be useful both to users and to theoreticians, and I am happy to see its inclusion with the tables.
J. N. L.

 - 0 O 1 anem

$0_{0}^{n} 0_{0}^{n} 0_{0}^{n}$

$$
1_{1}^{1} 11010000_{1}^{1} 0_{1} 10
$$

－••1の
1 1
m
－ivere

＊が＊

 .110100 nentica

1

 1

- anciltant ante

PMOA 1

$110_{0} \cdot a_{n} \cdot 11$

- 1 IIIIN11

-1 1001111m-11
n.

1

- aremineler
$\cdots \quad 0$
- intion momana

if winmi niomen

n
111 maine 04 men

11 anaman icnin
H Wil enol emol

- Nonncturno
- CMENOMA0
- • \quad

11410 comennern

* onemy oncmy
- Plantin Mas

- MoCldand

- emocmerale

- •

> - Ramiscempaol.
> - andorener
> - 1 rumperneran

Mrid 0

${ }^{1}$	
- 0	- 0 aros
- 2008	-mom
- Exolo	1.cmen
- inco	- 0 cos
- M	cmen
- $1 \times$	0.0

Ammente
The in- interien creviene $11=1$ $\ln 11100$

$10 \quad 0 \quad 0$
$\cdots \quad 0 \quad$?
$\cdots \quad 0 \quad 0 \quad 10.0$

Chistova 71, Ketter \& Prawel 64, Lether \& Wise 66, Miller 72, Noble 68, Russon \& Blair 74, Taggart \& Schott 75, Vidal 69, Watson, Philipson \& Oates 65.
Table Errata 999
Erdélyi, Magnus, Oberhettinger \& Tricomi 468, Glowatzki 469, Henrici 470.
Corrigendum 1001
Haber
Indices to Volume XXIV 1003
Index of Papers by Authors 1003
Subject Classification System for Index of Reviews 1007
Index of Reviews by Author of Work Reviewed 1010
Index of Reviews by Subject of Work Reviewed 1014
Index of Table Errata 1023
Index of Corrigenda 1024
Index of Microfiche Supplements 1024

Mathematics of Computation TABLE OF CONTENTS

October 1970
On the Stability of Friedrichs' Scheme and the Modified Lax-Wendroff Scheme Rémi Vaillancourt 767
Highly Accurate Numerical Solution of Casilinear Elliptic Boundary-Value Problems in n Dimensions Victor Pereyra 771
A Posteriori Bounds in the Numerical Solution of Mildly Nonlinear Para- bolic Equations Alfred Carasso 785
Convergence Properties of the Symmetric and Unsymmetric Successive Over- relaxation Methods and Related Methods David M. Young 793
Triangular Elements in the Finite Element Method
James H. Bramble \& Miloš Zlámal 809
A Procedure for Conformal Maps of Simply Connected Domains by Using the Bergman Function 821
Chebyshev-Type Integration Rules of Minimum Norm Philip Rabinowitz \& Nira Richter 831
Control and Estimation of Computational Errors in the Evaluation of Inter- polation Formulae and Quadrature Rules . . . Sven-Åke Gustafson 847
On the Existence of Regions with Minimal Third Degree Integration Formulas F. N. Fritsch 855
Error Estimates for a Chebyshev Quadrature Method . . . N. K. Basu 863
Trigonometric Interpolation and Curve-Fitting A. C. R. Newbery 869
Two Simple Algorithms for Discrete Rational Approximation
I. Barrodale \& J. C. Mason 877
Solution of Vandermonde Systems of Equations
Åke Björck \& Victor Pereyra 893
On the Numerical Computation of Eigenvalues and Eigenvectors of Sym- metric Integral Equations 905
Optimal Approximation in Hilbert Spaces with Reproducing Kernel Func- tions F. M. LARKIN 911
On Iteration Procedures for Equations of the First Kind, $A x=y$, and Picard's Criterion for the Existence of a Solution
J. B. Diaz \& F. T. Metcalf 923
Some Results on Sparse Matrices
Robert K. Brayton, Fred G. Gustavson \& Ralph A. Willoughby 937
A Note on Solid Partitions 955
Lower Bounds for Relatively Prime Amicable Numbers of Opposite Parity Peter Hagis, Jr. 963
Some Calculations Related to Riemann's Prime Number Formula Hans Riesel \& Gunnar Göhl 969
Reviews and Descriptions of Tables and Books 985Bhat \& Sahin 77, Bouwkamp, Duijvestijn \& Medema 80, Britney \&Winkler 78, Buchholz 63, Curtis 73, Fettis \& Caslin 70, Fettis\& Caslin 76, Greenberg 79, Hansen 67, Harary 81, Karpov \&

